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In this paper we describe the experimental apparatus that we use to measure transit 
speeds. Tables of measured values of transit speeds and the corresponding values of 
the shear modulus are presented. The criteria we use to determine if a transit speed 
is a shear-wave speed are described and applied to the data. The main criteria are 
that transit speeds should be independent of the gap size and the corresponding value 
of the shear modulus should be consistent with independent rheometrical 
measurements. All the elastic liquids and many liquids that are usually assumed to 
be Newtonian satisfy our criteria for shear waves. We present evidence that the 
measured wave speeds are associated with slower-relaxing molecular structures in the 
liquids. 

1. The wave-speed meter 
The wave-speed meter utilizes a Couette apparatus with coaxial cylinders which 

may rotate independently. The radius of the outer cylinder is b and that of the inner 
cylinder is a ;  b-a = d is the gap size. Liquid of height L is placed in the gap. The 
outer cylinder is moved impulsively. A shear wave propagates into the interior, 
toward the cylinder a t  r = a. After a certain time, the transit time, the inner cylinder 
is set into motion. The transit time would be the time of first reflection if the fluid 
was elastic or the diffusion time if the fluid was inelastic (Newtonian). We say that 
the fluid is elastic if the transit time is proportional to the gap size, with the same 
constant of proportionality for all sufficiently small gap sizes. The reciprocal of this 
constant is the wave speed. 

1.1. The apparatus 
A sketch of our wave-speed apparatus is shown in figures 1 and 2. A rigid structure 
is mounted on a heavy metal table, which supports the moving parts of the 
apparatus. The rigid structure consists of the upper (C) and lower (D) plates and three 
supporting pillars. The outer cylinder (A) is suspended on open ball bearings lying 
in grooves on the lower and upper plates, see figure 2. The inner cylinder (B) is 
designed to rotate easily. It is mounted on conical points which rest in pivot bearings, 
see figure 2. The inner cylinders that we use have very low moments of inertia. The 
frictional resistance to the motion of the inner cylinder is negligible. The test liquids 
are pushed into the gap between the cylinders by a plunger in a cylinder shown in 
figure 3. The fluid enters the gap through the lower bearing. This method of loading 
suppresses the formation of air bubbles in the test liquid. The inner cylinder is buoyed 
up by the liquid. It is seated properly in the bottom pivot bearing by adding an 
appropriate weight on the top of the upper bearing. This weight is evident in figures 
1 and 3. 
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FIGURE 1 .  Sketch of the wave-speed meter. 

I 

FIGIJRE 2. Details of the cylinders’ assembly. 
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FIQURE 3. Photograph of the wave-speed meter. 

1.2. Measurements of transit times 

A transit-time measurement is started by applying an impulsive force to the outer 
cylinder with a simple kicking device. To do this, a spring-driven piston (E) hits a 
lever arm which is rigidly attached to the outer cylinder. This kick induces an 
impulse, which propagates inward, and moves the inner cylinder. 

The laser-beam apparatus shown in figures 1 and 3 is the heart of the instrumcnt. 
Light from the laser is split into two beams by a variable-density beam splitter. One 
beam hits a mirror attached to the inner cylinder, the other hits a mirror on the outer 
cylinder. Each beam is focused onto its own photodiode. Voltages generated by the 
irradiated photodiodes are detected by voltmeters. I n  addition, the photodiodes are 
connected to a digital counter and a dual-channel oscilloscope. When the outer 
cylinder moves, its laser beam is directed off the corresponding photodiode. This 
action causes the voltage t o  drop, triggers the oscilloscope, and starts the counter. 
When the inner cylinder moves, its laser beam is removed from the corresponding 
photodiode. This action stops the counter. 

Transit times may be obtained from the counter or oscilloscope. The counter 
conveniently provides a number, while the oscilloscope provides two voltage versus 
time diagrams. To obtain a transit time from the oscilloscope, the time at which each 
cylinder moves must be known. Therefore, since the movement of the cylinders leads 
t o  a sudden drop in voltage, the times at which the voltages for each cylinder begin 
to  drop must be found, and the difference computed. Typical oscilloscope traces are 
displayed in sketches in figures 4 and 5 and photographs in figures 6, 7 and 8. 

Consider, for example, figure 6. On the left we see the signals just before the 
measurement when the voltage is constant, equal to about 1.9 V on the photodiode 
for the outer cylinder and about 1.7 V on the photodiode of the inner cylinder. Each 
square of the grid in this voltage versus time diagram is 2 x lop3 s wide and 
250 x V high. The start of the rotation of the outer cylinder is indicated by a 
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FIQURE 4. Sketch of voltage w. time obtained from the oscilloscope for an elastic fluid in a small 
gap. Two different transit times At, and At, are measured on the oscilloscope and electronic counter 
respectively. The oscilloscope time Ata is the difference between the moment of onset of motion 
of the inner cylinder and the moment of onset of motion of the outer cylinder. Atc is measured with 
the counter and shown at the voltage level a t  which the counter is triggered. The fall times Atb 
and Ata for outer (T = b) and inner (7 = a) cylinder are usually taken between 10 and 90% of the 
initial voltage. The reader should note that the voltage vs. time graphs in figures 6-8 are digitized. 
The voltage drop corresponding to the outer cylinder consists of very few digital points and is 
difficult to distinguish. 

t Voltage 

FIQURE 5. Sketch of voltage versus time for a more dilute solution in a large gap. The large fall 
time of the voltage at the outer cylinder, Ata, leads to a large difference in the transit times At, 
and Ata measured on the counter and the oscilloscope. 

sudden fall of the first signal along the dots, each lov5 s apart. The motion can also 
be detected at the inner cylinder before the shear wave arrives. The signal a t  the inner 
cylinder becomes noisy when the outer cylinder is impacted. This noise is apparently 
due to vibrations of the metallic apparatus and perhaps to acoustic waves travelling 
through the liquid. These signals travel at  speeds greater than lo3 m/s and arrive 
after fractions of a ps. The noise is rapidly damped and the constant voltage at the 
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FIGURE 6. 1 % Polyox (coag.) in water; 2 mm gap; At, = 13.541 ms; c = 14.77 cm/s. 

i 540 US 
FIGURE 7. 1 % CMC in 50% glycerin and 49% water; 1 mm gap; Atc = 2.218 ms; c = 45.09 cm/s. 

photodiode of the inner cylinder is restored. At a much later time, the transit time, 
the shear wave arrives and turns the inner cylinder. The oscilloscope shows this as 
a voltage drop. 

Formulas for the angular velocity of the inner cylinder were developed in $55 and 
6 of Part 1 of this paper (Joseph, Narain t Riccius 1986a). The following 
considerations lead us to believe that the voltage drop as a function of time is linearly 
related to the angular displacement of the cylinders in the extremely small interval 
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FIQURE 8. Soybean oil; 3 rnm gap; Atc = 15.301 ms; c = 19.61 crn/s. 

of time it takes the laser beam to cross the photodiode. The d.c.-circuit containing 
the photodiode provides the voltage V = RI to the oscilloscope, where R is the 
resistance and I the current. We operate the photodiode in a range in which I varies 
linearly with the light intensity as long as the intensity is not too small. The intensity 
changes as the laser beam sweeps across the photodiode. The circuit equation is 

dV d l d x  
dt dx dt 
-=R---, 

where dxldt = 2 0 6  and D is the distance between the mirrors and the photodiodes. 
dl ldx is essentially constant over the small range of x covered by the laser light on 
the photodiode; hence 

d l  
K = 2RD- 

ax  V(t) = KO(t), 

The diameter of the sensitive area of the photodiode is less than 1 mm; the diameter 
of the laser beam is about 1 mm and D is about 1.2 m. 

The reading of the transit times from the oscilloscope involves an element of 
subjectivity through the evaluation of the voltage versus time diagrams. The 
counter, on the other hand, is triggered automatically when the signal falls from about 
1.75 to 1 .O V. However, the counter time is less than the transit time read on the 
oscilloscope by as much as 50%. The oscilloscope times are closer to  true transit 
times. 

A comparison of figures 6, 7 and 8 shows that the drop of the signal for the inner 
cylinder is approximately parabolic in time and that the fall time increases with gap 
size. This dependence on time and gap size agrees with theoretical results derived in 
$6 of Part 1. The difference between transit times on the oscilloscope and the counter 
is exaggerated in larger gaps because the fall times are longer. 
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1.3. Rise times and response times 

We use the term response time to mean the time taken by the instrument to register 
a wave after it has struck the inner cylinder. The rise time is the time taken for the 
outer cylinder to  reach a constant velocity. The response time could be much smaller 
than the rise time. 

We must first take note of the response time of the photodiode circuit and the 
oscilloscope. Since both of these are of 0(1Op6 s), we cannot hope to measure anything 
that relaxes faster than 

The rise time of our instrument is associated with the first reaction of the outer 
cylinder to  an impulsive kick. This response represents a period of acceleration lasting 
from 30 to  100 ps. 30 ps is a typical time for the transfer of momentum between 
impacting elastic bodies. This period is followed by a rapid voltage drop of constant 
slope corresponding now t o  a constant angular speed of the outer cylinder. Typically 
the rise time is much smaller than the transit time. In  this case the inner cylinder 
responds to  a step increase in velocity. However, for very elastic fluids like the 
600000 cs silicone oil in small gaps the transit and rise times can be of the same 
magnitude and the inner cylinder responds to somewhat smoother initial data. 

We monitored the input signal with a high-speed video system (Spin Physics 
SP2000). The outer cylinder is still moving at nearly constant velocity after one 
transit time except in very dilute low-viscosity liquids in larger gaps. When the 
transit time exceeds 10 ms the outer cylinder comes to rest before a measurement 
is completed. 

s on the meter as i t  is presently designed. 

2. Criteria for shear waves 
The criteria that  we use to  determine the existence of a shear wave and its speed 

are listed below. For a given fluid at a constant temperature we need to  measure only 
one wave speed for different gap sizes. We define a transit speed by c = d/At ,  where 
At is the transit time. We say that c is a shear-wave speed if we get one value of c 
for different values of the gap size d .  We think that our data show that for most fluids 
we have measured shear-wave speeds. The data are displayed so that readers may 
form their own opinion. 

Given a shear-wave speed we define an experimental shear modulus 

G, = pc2.  

The degree of agreement between experimental shear moduli computed from wave 
speeds and independent measurements from step-strain and storage-modulus experi- 
ments is encouraging. 

2.1. Consistency checks 
We say that transit speeds are consistent with shear waves if the criteria listed below 
are satisfied. 

(i) Repeatable transit times, without excessively large standard deviations, are 
measured. Averages and standard deviations arc taken over about ten readings. 

(iv) The transit timc At is proportional to the gap size b-a  = d = cAt with one 
and the same constant of proportionality c ,  independent of d .  The reader can see 
which fluids pass these tests by reading the columns under c in tables 1 and 2. It is 
perhaps necessary to draw attention to  the fact that  we measured c for many d-rduc.s 

def 

11 k 1 . M  171 
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in some liquids, and for few d-values in others. This is due either to the number of 
gap sizes that we had at a given time, to experimental problems in loading very 
viscous liquids into small gaps, to other experimental problems or because we were 
satisfied that nothing new would emerge from changing the gap size further. 

(iii) The shear modulus G, = c2p is consistent with stress relaxation for all liquids 
for which standard rheometers work. Practically, this means that 

G, ’ G(t) 

fort 2 to > 0, where to = 0.02 s. This is the rise time on the Rheometrics System Four 
and the Rheometrics Fluid Rheometer used in our experiments. It is also typical for 
other standard rheometers. In $4 we shall examine this consistency check in detail. 

(iv) The shear modulus G, = c2p is consistent with values of the storage modulus 
@(o) taken in independent measurements. The nature of this consistency requires 
a little thought and will be discussed in $84 and 5. 

(v) The dependence of the wave speed and the corresponding shear modulus on 
temperature, concentration and molecular weight follows trends set by established 
theories and experiments. This type of consistency check is discussed in $$3,4 and 5. 

We have gained confidence in the wave-speed meter through experience with its 
performance. It is hard to describe this rather elusive criterion except to say that 
we observed many instances of apparent inconsistency and all of them were 
evanescent. 

2.2. Sensitivity checks 
Some checks to determine the sensitivity of c on parameters of the apparatus are 
discussed below. 

Large changes of the moment of inertia of the inner cylinder led to only small 
changes in the measured values of c. For example, a 42 % change of the moment of 
inertia changed c by less than 2.3% in soybean oil (plus additives, sold under the 
brand name ‘Crisco’). A more important observation is that different inner cylinders 
corresponding to different gap sizes have different moments of inertia but they give 
rise to the same wave speeds. 

One of the nicer design features of the present apparatus is the large wetted surface 
on the inner cylinder. This feature allows us to neglect end effects. The large wetted 
surface also transmits a large torque. A change in the filling level L in the gap reduces 
this torque. Small changes of L have no apparent effect on c .  We changed L in a 
1.38 mm gap filled with soybean oil. The value of c(cm/s) in the full gap was 
22.0f0.9, in the gap filled to tL,  c = 20.6k0.9 and in the gap filled to 
$L, c = 18.6+_ 1.3. 

We also investigated the influence of friction at the pivot beariqgs of the inner 
cylinder. The inner cylinder rotates very easily. It can be turned even by gentle 
blowing. We changed the load on the pivot bearing by adding an additional load of 
641 %. The measured c for soybean oil in a gap of 1 mm changed by only 4%. This 
suggests that static and dynamic friction are negligible. 

We studied the sensitivity of our measurements to changes in the size of the initial 
impulse a t  the outer cylinder. The spring-loaded kicking device has five different kick 
sizes. In addition we may change the position of the kicker relative to the lever arm. 

It is of interest to record the effect of these changes on the wave speed c for a 
vegetable oil which like olive oil might be supposed to be Newtonian. The transit 
speeds for this oil are independent of gap size over a decade ; the soybean oil appears 
to exhibit stress relaxation and also has a non-zero storage modulus at a low 
frequency (see figure 19). 
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FIGURE 9. Variation of transit speeds with kick size in two liquids. 

In figure 9 we display some of the results of tests with different kick sizes. We 
compare a very dilute and slightly elastic solution of 0.1 % poly(acry1amide) AP30 
with its solvent (50 % aqueous glycerin). The measured wave speeds for the polymer 
solution stay in the same range for all gap and kick sizes, between 7 and 9.5 cm/s. 
The different kick sizes have only a small influence on c .  

For the solvent 50% aqueous glycerin we record a loss of the signal in the 2 mm 
gap. Only for kick size 3 is the signal strong enough to turn the inner cylinder. The 
measured wave speed, however, shows a strong standard deviation. Thia effect 
becomes even clearer when we examine the 3 mm gap. We observe again a loss of 
the signal for kick size 1. Both kick sizes 2 and 3 show large standard deviations and 
most importantly give very different values for c.  

More-viscous fluids do not seem sensitive to changes in the size of the kick. For 
example, in 9.5 % PIB in decalin (,Z = 139 Pa 8 )  we observed only a small change of 
the initial data for different kick sizes. The fall times of the input signal, which are 
related to the initial speed of the outer cylinder, correspond to the different kicks as 
follows: kick size 1 corresponds to a fall time of 98.4 ~ s ,  2-104 pa, and 3-103 ps. In 
10 % polystyrene (MN = 22000, ji = 0.011 Pa a), however, kick size 1 corresponds to 
110 pa, 2-99 p., and 3-78 ps. Stronger kicks merely increase the elastic vibrations of 
the apparatus. More data on sensitivity cheaks can be found in Joseph, Riccius 
& Arney 19863. 

11-2 
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FIGURE 10. Wave speeds as a function of concentration. 0, polystyrene in decalin; 
M N  = 2-3000000; 0 ,  polystyrene in decalin, M N  = 22000; 0 ,  Polyox (WSR-301) in water; +, 
Poiyox (coag.) in water; x , glycerin in water; +, polyacrylamide (AP 30) in 50% glycerin and 
( 5 0 4 )  yo water. 

2.3. Brief summary of results 
We measured transit times in different liquids : 

silicone oils of different molecular weight at different temperatures ; 
miscellaneous lubricating oils ; 
soybean oil, olive oil; 
honey ; 
polymeric solutions in various degrees of dilution and molecular weight. Ten 
different polymers were used in solvents of water, water and glycerin, decalin, 
petroluem oil; and 
aqueous glycerin in various degrees of dilution. 

I n  general we get an elastic response for high-molecular-weight silicone oils and 
polymeric solutions that are not excessively dilute. All the fluids that have clear 
stress relaxation in the step-strain test and non-zero values of the storage modulus 
that increase with frequency pass all of our tests for shear-wave propagation. Many 
common ‘Newtonian fluids’ pass these tests; some common petroleum oils, soybean 
oil (Crisco), olive oil and glycerin. It is of course not surprising that these liquids are 
elastic but the wave speeds that we measure are orders of magnitude smaller than 
the wave speeds 

c = O(G(O)):, G ( 0 )  = 1 O ’ O  dyn/cm2, c = 0(105 cm/s) 
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that  are expected near the glassy state of full elasticity. Our instrument does not 
work for times shorter than s and it cannot be expected to detect rapidly 
relaxing glassy modes. It is probable that our measurements of wave speed in these 
'Newtonian liquids ' reveal slower-relaxing structures than those associated with 
glassy states. Whatever the truth may be about the 'Newtonian liquids' they pass 
our criteria for elastic response unambiguously. 

Other fluids which are even more 'Newtonian' give neither acceptable stress 
relaxation for the step-strain experiments nor non-zero storage moduli in sinusoidal 
oscillation experiments. These include water, dilute solutions of polymers in water, 
aqueous solutions of glycerin when the percentage of glycerin is less than 70 %, dilute 
solutions of polymers in aqueous glycerin, decalin, dilute solutions in decalin and 
low-viscosity silicone oils. The wave-speed data for these liquids are much more 
erratic. The standard deviations are large. The data ( c  or G,) that  we get in polymer 
solutions for decreasing concentration are perfectly normal, without anomalies, 
though anomalous data a t  extreme dilution is exactly what might be expected from 
'Newtonian ' solvents. To be clear about the last sentence, note that the wave speed 
c of aqueous Polyox (figure 10) passes smoothly to the measured value of c in pure 
water as the concentration is reduced to zero. Probably we pass smoothly from waves 
to diffusion as we reduce concentration. We see some evidence for this in the loss of 
signal a t  the larger gap sizes. 

3. Wave speeds 
Tables 1 and 2 presented in this section give all the values of c that  we have 

measured up to October 1985. Measurements taken prior to May 1985 are summarized 
in table 1, those taken after May 1985 are summarized in table 2. All of the transit 
speeds in table 1 were measured on the electronic counter. After May we realized that 
the counter values of c could be as much as 50% lower than oscilloscope values. I n  
table 2 we give both the counter and oscilloscope data. The effective modulus a, is 
obtained from the average e of c as 8, = pi?. Gap sizes for various measurements of 
the transit speed are listed in mm. 

The values of ,%, the static or zero-shear viscosity, were taken as limiting values 
of shear rate sweeps on a Rheornetrics System Four rheometer, from a Rheometrics 
Fluid rheometer, or from published data. 

We were not systematic in recording temperatures a t  the time of measurement 
prior to  May 1985. These data, given in table 1, were taken at temperatures varying 
between 22" and 24 "C. 

In general all the data for each different gap size were collected on the same day. 
Data under c that  were collected on different days are marked with *. Some liquids 
change properties from day to day because of temperature variations, evaporation 
or chemical reactions. 

Readers may wish to  determine when c is independent of d for small d .  This 
independence is fairly unambiguous in most cases. We note that rapid spatial decay 
is expected in fluids with short memories, e.g. Newtonian fluids, and the response will 
appear to be diffusive in the larger gaps. This manifests itself as a decrease of c with 
d .  Such decreases are evident in aqueous glycerin solutions with even small amounts 
( 2 20 %) of water, water, silicone oil, 5 % polystyrene in decalin, and decalin. We 
cannot conclude that these fluids are elastic. On the other hand, all fluids will appear 
to  be diffusive when the gaps are sufficiently large (see $3 of Pt~rt 1). We require that 
c be independent of d for small d .  
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Fluid 

1 yo Carboxymethyl cellulose in 
50 yo glycerin and 49 yo water 
,MN = 16000 

Amoco gear lubricant no. 140 

Glyoerin 

90/10 Uly/H,O 

80/20 Gly/H,O 

70/30 Uly/H,O 

60/50 Gly/H,O 

Honey 

SAE 30 motor oil 

1.5 yo Poly(acry1amide) separan 
AP 30 in 50 % glycerin 
and 48.5% water 
MN = 4000000 
1.25% AP 30 

1.0% AP 30 

0.75 yo AP 30 

0.50% AP 30 

0.25 yo AP 30 

0.10% AP 30 

0.05% AP 30 

i 
(Pa 8 )  

44.8 

1.63 

0.69 

0.15 

0.04 

0.03 

0.01 

249 

0.098 

160 

112 

53.8 

36.4 

10.5 

4.5 

0.3 

0.11 

C 

(cm/d 
50.6 

368 

142 

43.5 

18.1 

9.7 

4.7 

1360 

76.3 

38.4 

34.3 

30.7 

26.3 

22.0 

18.9 

8.3 

6.8 

0, 
(Pa) 
305 

12500 

2550 

233 

39.3 

11.1 

2.5 

256000 

516.0 

172 

137 

109 

74.9 

55.9 

41.1 

7.6 

5.2 

Gap 
(mm) 

1 
2 
3 
1 
2 
1 
2 
3 
1 
2 
3 
0.25 
0.5 
1 
2 
3 
0.25 
0.5 
1 
2 
3 
0.25 
0.5 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

47.3 f2.5 
51.4f 1.4 
53.1 f 1.5 
384.3 f 7.8 
352.1 f 10.0 
134.6f8.3 
148.9f 12.0 
143.3k2.7 
46.7f2.9 
40.5f1.7 
43.4fl.9 
18.3f3.5 
18.2f1.3 
17.8 k 0.7 
16.4 f 0.6 
12.2f0.8 
9.63f 1.1. 
9.78 +0.86* 
9.650.3 
6.9f 0.2 
6.6f0.5 
4.67 k0.6 
5.89f0.24 
3.5f0.3 

0 
0 

167 1.3f498.5 
1403.1f268.9 
977.2f 175.5 
81.7f 15.4 
68.3f 6.6* 
78.9f5.8* 
37.5f1.2 
38.4f 3.2* 
39.3 k 1.7 

33.8f1.8 
33.3f1.8 
35.8k1.2 
29.0k 1.1 
31.1 & 1.9 
32.0+ 1.5 
25.5+ 1.6 
24.7f1.4 
25.7f1.4 
23.5f1.2 
22.1 f 1.2 
20.4+0.4 
18.5f 1.2 
18.0* 1.0 
20.2+2.2 
7.7 f0.8 
7.8k0.6 
9.3k1.2 
7.5f0.7 
6.1 k0.7 
9.6f 3.3 

1.19 

0.924 

1.26 

1.23 

1.2 

1.18 

1.12 

1.40 

0.886 

1.17 

1.17 

1.16 

1.16 

1.16 

1.15 

1.12 

1.13 
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TABLE 1. (cont.). 

Fluid 

Poly(dimethy1 siloxane) PDMS 
60000 cs silicone oil 
M N  = 65OOO 
lot no. LL 110426 

M N  = 16500 
lot no. 093564 

M N = 1 5 0 0  
lot no. 103243 

PDMS 1000 cs silicone oil 

PDMS 20 cs silicone oil 

1.7 % Poly(ethy1ene oxide) 
(Polyox) coagulant in water 
M N  = 4000000 

1 .O yo Polyox coagulant 
in water 

0.75 yo Polyox coagulant 

0.50 yo Polyox coagulant 

in water 

in water 

0.25 yo Polyox coagulant 
in water 

0.25 % Poly(isobuty1ene) 
in Poly(butene) 

STP 

Soybean oil (plus additives, 
brand name ' Crisco ') 

TLA 227 

Water 

B 
(Pa 8) 
63.6 

0.97 

0.02 

58.4 

6.12 

0.37 

0.1 

0.03 

12.3 

14.3 

0.046 

22.3 

0.001 

C 

( 4 s )  
719 

167 

10.1 

25.7 

14.7 

9.8 

6.9 

3.35 

1250 

286 

19.9 

234 

1.28 

0, 
(Pa) 

50300 

2690 

9.68 

68.0 

21.5 

9.55 

4.69 

1.12 

139000 

7050 

36.5 

4840 

0.16 

Gap 
(mm) 

1 
2 
3 

1 
2 
3 

0.25 
0.38 
0.5 
1 
0.25 
0.50 
1 
2 

0.25 
0.50 
1 
2 
3 
0.38 
0.5 

1 
2 
3 
0.25 
0.5 
1 
2 
3 
1 
2 
3 
1 
2 
3 
0.25 
0.38 
0.50 
1 
1.38 
2 
3 

1 
2 
3 

0.25 
0.38 
0.50 
1 

C 

(cm/s) 
686 f 129 
748 f 49 

1277 f 101 * 

167.9 f 25.9 
164.1 f4.9 
l68.4f 18.3 

11.0f0.8 
11.2f 1.8 
9.Of1.1 
9.2f1.0 

22.3f2.8 
24.4f2.5 
27.0f0.6* 
28.9+ 1.3* 

12.7f 1.7 
14.3f 1.4 
14.5f0.5 
16.1 f4.8 
16.0k0.5 
9.8f0.6 
9.8fO.6* 

6.8k0.2 
6.9f0.3 
6.9f0.3 

3.22+0.71 
3.34f0.30 
3.39f 0.32 
3.42k0.99 
3.37f1.71 

1580f600 
995 f 158 

1170f102 

277 f 42 
279f 10 
304 f 9 

19.2f3.3 
18.4k2.1 
20.9f2.3 
21.2f2.2 
22.0f0.9 
17.8f 1.7 
15.5 f 1.1 

211+16 
246 f 3 
245f6 

1.35f0.13 
1.36 f 0.17 
1.12 f 0.07 

0 

P 

0.974 
(g/cm3) 

0.967 

0.949 

1.03 

0.997 

0.994 

0.999 

1 .OO 

0.893 

0.858 

0.922 

0.884 

1 ,000 

TABLE 1. Transit speeds and shear moduli for different liquids. Data taken prior to 5 May 1985. This table 
gives wave speeds taken from the electronic counter. The counter values are from 10 to 50% too low 
(cf. counter and oscilloscope values, table 2). 

*Denotes data collected on a different day from the other data for that  gap size. 
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Gap 
Fluid (mm) 
1 yo CMC 1 

2 
3 

1.5% AP 30 1 
TLA 227 1 

2 
3 

3 
0.25 
1 

Soybean oil 1 

I .7 yo Polyox coag. 

1 % Polyox coag. 2 

dGL(0) 

-0.1 
-3.3 
-2.6 
-2.2 
-2.2 
- 0.2 
- 1.7 
- 2.7 
- 4.4 
-0.5 
- 1.2 
- 3.0 

2CQ,(O) 
q o )  

(106 Pa/s) 

- 0.2 
- 9.0 
-4.1 
-9.9 

- 380 
- 29 
- 250 
-1.6 
-2.2 
-3.4 
-1.0 
-0.2 

TABLE 3. Order-of-magnitude determination of Gi(0) from oscilloscope traces 

3.1. Dependence of wave speeds on concentration 
We turn next to the dependence of the transit speed on concentration. Results for 
two aqueous Polyox solutions, for poly (acrylamide) in a 50/50 glycerin-water 
solution, for two solutions of poly(styrene) in decalin and for aqueous glycerin 
solutions may be read from tables 1 and 2 and figure 10. These graphs show normal, 
rather than anomalous behaviour in that the wave speed and thus the corresponding 
modulus is a decreasing function of the concentration. Anamolous behaviour would 
be associated with glassy modes with timescales of order lo-' s or shorter. These fast 
modes decay too rapidly to be measured on the wave-speed meter. It seems 
improbable that our data for dilute solutions give wave speeds associated with 
relaxing elasticity of slowly decaying modes. However, we could not establish 
diffusion for these cases and we think it prudent to leave the question open. 

3.2. Remarks about the experimental determination of Gi(0)  
The oscilloscope traces (see figures 6, 7 and 8) can be used to determine order- 
of-magnitude estimates of the exponent (dGi(O))/(BcG (0)), which appears in Part 1, 
equation (6.7), and is important as a measure o!decay of amplitude at the 
wavefront. 

We find values of the exponent by evaluating the parabolic voltage drop repre- 
senting the motion of the inner cylinder for small times t - d/c .  An estimate of its order 
of magnitude is a different type of consistency check for our instrument, yielding two 
bits of useful information. The exponent gives the decay of the wave amplitude which 
must be large enough to detect the wave. For consistency we need very large, but 
finite values of IGk(0)l. We require that it should be possible to connect the point 
G, = G,(O) with the measured relaxation function G(s) (see the tangent construction 
given in figure 1, Part 1). In  general this will require very steep slopes (see figures 
11-16). At the same time the value of the exponent which contains GL(0) as a factor 
should not be too negative. These two requirements, which at first thought are 
contradictory, are actually satisfied by our data (see table 3) .  We compute the 
parabolic trajectory from the oscilloscope trace. We have first to identify the vertex 
of the parabola. This identification is not accurate, especially when the gaps are small 
and the signals have small sinusoidal oscillations. 
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4. Comparison with independent measurements 
As far as we know the wave-speed meter is the only instrument of its kind. It is 

based on the measurement of speeds of shear waves into a fluid at rest, rather than 
on measurements of stresses. The instrument has strong and weak points which we 
can assess by comparing i t  with other kinds of rheometrical experiments. The main 
comparisons will bc made (i)  with data on the stress relaxation function for different 
liquids taken on a standard cone-and-platc rheometer and (ii) with data on the storage 
modulus taken a t  different frequencies with different rheomcters using small- 
amplitude sinusoidal oscillations. 

Before starting on these comparisons we take note of the experiments of Lieb 
(1975) who uses tracer particles for flow visualization of shear waves in four fluids. 
He shows photographs indicating shear-wave propagation in only one of them, a 
solution of carboxymethyl-cellulose (CMC) in 49 yo water and 50 % glycerin. He 
estimates c > 8 cam/s. We measure a shear-wave speed of c = 50.6 cm/s on the 
electronic counter (see table 1) .  

All of the following comparisons are indirect in that thcy are based on the 
computed value G, = p 2  of tho shear modulus. 

4.1. Comparison with stress relaxation 

The simplified theory of stress relaxation (see, for example, Bird, Armstrong & 
Hassagcr 1977) is the underpinning for measuring relaxation in current state-of-the- 
art cone-and-plate rheometers. The stress-relaxation data in this report were taken 
on a System Four rheometer (Rheometrics, Inc., Union, NJ).  Some details of design 
and use of this rheometer arc discussed in the paper by Papanastasiou, Scriven & 
Macosko (1983). They note that 

Though in principlc the rclaxation modulus, ..., could be found from sufficiently 
small strains, . . . , this is not entirely possible in practice for two reasons. The rise 
time of the instrument in step shearing is about 5 ms. Thus, G ( t )  results are limited 
to t > 0.01 s. At times long enough that the torque on the transducer falls below 
1 g, om the inherent noise and perhaps drift in the transducers (2000 g, cm model) 
shows up as extraneous oscillation and deviations in the recorded curve. 

The Rheometrics System Four, and other state-of-the-art rheometers do not work 
for thin liquids because the torque on the transducer is too small. Of course, there 
are borderline fluids of low viscosity, say about 10 P or so, for which the measured 
torques are barely high enough for the transducer. We regard our results for these 
fluids as uncertain. These types of rheometers appear to work fairly well for thicker, 
less ‘Newtonian’ fluids, such as 9.5 ”/b Vistanex L-100 in decalin. 

We recall now that 7,  the elastic viscosity, is the area undcr the relaxation curve 
and the static viscosity ji is not smaller than the elastic viscosity, ji 2 7. Nearly all 
the area under the relaxation curve of fluids with short-range memory is in the region 
of small times s > 0. Since G(s) x 0 for large s, the large-s values are not important 
for liquids with short-range memory. Since G(s)  is unknown for small s > 0,s =+ 0, 
the area undcr the relaxation curve cannot be computed for liquids with short-range 
memory. The area under relaxation curves for fluids with long-range memory 
depends strongly on the values G(s) for large s. These long-range-memory values are 
also not computable from data taken on the Khcometrics System Four. The value 
,ii of the static viscosity is shown on t h e  figures as the area of a square of side Pi. 

In the data given here we get G(t)  when t 2 0.02 s, when the torque on the 
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FIGURE 1 1 .  Shear modulus Gc = 256000 Pa and relaxation function for ..oney, (7' = "C, y = 1) .  
The zero-shear viscosity ,E = 196 Pa s (7' = 32 "C) is the area of the square. 
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FIGURE 12. Shear modulus ac = 172 Pa and relaxation function G(s)  for 1.5% poly(acry1amide) 
Separan A P  30, 50% glycerin and 49% water, MN = 4000000 (2' = 30 "C, y = 1). The zero-shear 
viscosity @ = 160 Pa  s (T = 30 " C )  is the area of the square. 

transducer is above the critical 1 g, cm value. Since we are at the border of this 
critical condition in many liquids, a certain degree of caution in interpreting the data 
is advisable. The first high rise in the graphs of stress relaxation shown here satisfies 
the required condition on the torque on the transducer. 

The values of the strain y in the step-strain experiment are indicated on the figures 
11-16. For linear theories, the smaller the value of the strain, the better. We could 
not satisfy the critical condition for the torque with small strains in many fluids. By 
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FIGURE 13. Shear modulus 8, = 2210 Pa and relaxation function Q(s) for 9.5% poly(isobuty1ene) 
(Vistanex L-100) in decalin, MN = 1OOO000, (T = 25 "C, a = 1 ) .  The zero-shear viscosity z = 139 Pa s (T = 25 "C) is the area of the square. 
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FIGURE 14. Shear modulus ??, = 68.0 Pa and relaxation function @(a) for 1.7 yo polyox coagulant, 
MN = 4000000, (T = 28 "C, y = 1) .  The zero-shear viscosity ,C = 58.4 Pa s (T = 27 "C) is the area 
of the square. 

and large we went to the smallest strains for which we could get reliable readings. 
The graphs of G(t )  do depend on the strain. 

On each figure we give the mean value of the shear modulus 8, = pi? that  was 
measured on the wave-speed meter. We should remind the reader that  values of 8, 
taken from table 1 are based on counter rather than oscilloscope values and are 
therefore too low. Despite this 8, is larger, usually much larger, than the largest value 
G(t )  recorded on the Rheometrics System Four. This indicates that  we are getting 
G(t)  at early times E < 0.02 s, at least. In  the next two sections we shall compare our 
wave-speed data with data from dynamic measurements. This comparison suggests 
that  E < 0.001 s may be a conservative estimate of the time E of response, G, = G(E) .  

Figures 11-16 and table 4 should be studied together. These figures and that table 
are arranged according to  decreasing viscosity. There is no correlation between 
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FIGURE 15. Shear modulus Gc = 90700 Pa and relaxation function G(8) for 60000 cs PDMS, 
MN = 65000, (T = 24 "C, y = 1). The zero-shear viscosity C; = 58 Pa s (T = 24 "C) is the area of 
the square. 
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FIGURE 16. Shear modulus Gc = 305 Pa and relaxation function G(s) for 1 % carboxymethyl 
cellulosein 50 yo glycerinand49 % water, M N  = 160000 (T = 23 "C, y = 1). Thezero-shear viscosity 
C; = 53.4 Pa s (2' = 23 "C) is the area of the square. 

viscosity and rigidity. However, the ratio B/G, can be regarded as a mean relaxation 
time for the effective modes. Readers may verify that this mean relaxation time does 
describe in some sense just what one sees in figures 11-16. 

There are 26 more such stress-relaxation plots for other liquids in Joseph et al. 
(1986b), which is available on request. All of our tests of stress relaxation were 
consistent with the measured wave speeds and figures 11-16 are representative. 
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4.2.  Comparison with dynamic measurements 

Dynamic measurements give the response of the liquid to small-amplitude sinusoidal 
oscillations of frequency w .  This type of measurement is the best diagnostic tool for 
determining the viscous and elastic response of liquids in the linear range (see 92 of 
Part 1 ) .  The elastic response in dynamic measurements is given by the storage 
modulus B ’ ( w ) .  The limiting w+oo value of the storage modulus is equal to the 
instantaneous value of the relaxation function (the rigidity), @(a) = G(0). Various 
techniques have been devised for determining o ‘ ( w )  for very large values of w .  If it 
were possible to  determine G(t)  from @ ( w ) ,  we could use dynamic measurements to 
say something about the time of response e a t  which G(c) = G,. 

It is customary to note that since both G(t) and w’(o) are measures of stored elastic 
energy a dynamic measurement a t  frequency w is qualitatively equivalent to a 
transient a t  t = l / w .  This statement could be misinterpreted to mean that @( l / t )  and 
G(t)  are close a t  small times. In  fact, though they have the common value G(0) a t  
t = 0 ,  the values separate at a ‘maximum ’ rate because whereas 

is stationary, 

“0.(+)1 = - 2 G ( o ) t + o ( t 3 )  
dt t=o 

x - co 

is very large. For certain relaxation functions, w ‘ ( l / t )  and G(t)  can be very different, 
even a t  small values of t .  For example, the ratio of the storage modulus to  the 
relaxation function for a Maxwell model with a single relaxation time A,  

can be arbitrarily large, even for small t ,  if the relaxation time A is sufficiently small. 
The reaSon for this is that the relaxation function decays exponentially while the 
storage modulus decays algebraically. 

In  figures 17 and 18 we have compared G(t)  and w ’ ( l / t )  for 

( G ~ ,  G,, G,) = (109,104,104 c n-3 
1 7  1 (4 .4)  

(Ao,  A,, A,) = 3 x 3 x lOP3/n3).  I 
This relaxation function has one fast and 25 slow modes. It is representative for 
relaxation functions with widely separated spectra. The purpose of this comparison 
is to show that an effective modulus G,(O) could be masked in the storage modulus 
by the slow algebraic decay of the fast mode. The dramatic differences shown in figure 
17 are reduced in regions in which G(t)  is slowly varying. 

In general, for relaxation functions that admit a spectral representation, 

(4 .5)  

with equality at t = 0 and t = oo (see Ferry 1980, pp. 41,42 and 69) .  The inequality 
(4 .5)  allows us to compare wave-speed and storage-modulus measurements. 
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FIQURE 17. Comparison of relaxation function and storage modulus given by (4.4). This comparison 
is for short times on a linear scale. The comparison shows huge differences at early times. 

1 

10 10' 10s 104 10s 106 107 
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FIQURE 18. Comparison of relaxation function and storage modulus given by (4.4). This comparison 
is set in the logarithmic coordinates used by polymer chemists. The existence of an effective 
modulus G,(O) E 0(106) is not so clearly evident in the storage modulus. 

The storage modulus may be measured on most cone-and-plate rheometers. These 
rheometers are designed to work with very viscous liquids and are limited to a 
frequency range, below lo00 rad/s. We took these dynamic measurements on the 
Rheometrics System Four, with a maximum frequency of about 500 rad/s on the 
following liquids : soybean oil, olive oil, glycerin, aqueous Polyox in concentrations 
of 0.9 and 1.3 %, 10 % B50 in decalin, silicone oil of viscosity 10,125,1000 and 6000 St. 
In  all cases G, is substantially larger than the largest value @ ( w )  for w = 500 rad/s. 
From this, and the inequality (4.5), we conclude that G, = G(s)  with E < 0.002 S. 
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FIGURE 19. Storage modulus for different liquids. 0, 0.9% Polyox, WSR-301; 
0, glycerin; A, olive oil; V, soybean oil. 

The same type of comparison holds for some fluids on which independent data have 
been published. Values of the storage modulus for 2 % B200 in decalin for frequencies 
up to 80.8 rad/s are given by Walters (1983). The highest value of 8' is 31.1 Pa at 
the highest frequency and G, = 131 Pa. Bird et al. (1977) exhibit data of Huppler, 
Ashare 6 Holmes (1967) for the storage modulus of a 1.5 yo solution of poly(acry1amide) 
in 50 % glycerin and 48.5 % water. They say that @ ( w )  is nearly at its limiting value 
with @ ( w )  = 140 Pa at frequencies of o = 100 rad/s. By a limiting value we 
understand an effective modulus. We measured a G, = 172 Pa on the counter. The 
oscilloscope value would be much higher. 

In figure 19 we present machine plots of dynamic data for 0.9 % aqueous Polyox, 
soybean oil, olive oil and glycerin. The last three liquids are commonly considered 
to be Newtonian. However, they appear to be elastic on the Rheometrics System 
Four (they pass the torque test for the transducer) and they give rise to a wave speed. 
We are reluctant to conclude that these fluids are elastic, and wish to let the readers 
draw their own conclusions. 

5. Comparison with high-frequency data on silicone oils 
In this section we shall compare data for the storage moduli of six different 

poly(dimethylsi1oxane) liquids given by Barlow, Harrison & Lamb (1964, hereafter 
called BHL) with our data giving shear-wave speed and the corresponding shear 
modulus for some of the same liquids. BHL measured the shear mechanical 
impedance in silicone oils over a frequency range of 10 KHz-78 MHz at temperatures 
from -50' to 50 "C on three different instruments. The complex rigidity can be 
obtained from the shear mechanical impedance. The comparison we wish to make 
can be read from figure 20. To understand this figure the reader should understand 
the method of reduced variables and how to compare the storage modulus Q'(w) with 
the relaxation function G( 1 /o). 

The method of reduced variables is widely used to compute master curves for the 
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FIGURE 20. Storage modulus @ ( w )  measured by Barlow, Harrison & Lamb (1964) for silicone oils 
of different viscosity : solid curves represent experimental values and dotted curves application of 
the Rouse theory. The horizontal lines represent the values G, obtained with the wave-speed meter. 
The heavy bars give the probable range of values t = l / w  in which t = E where G, = G(E)  (cf. figure 
18). 

storage modulus (see Ferry 1980, chap. 11). To illustrate this method we consider 
the storage modulus 

7 G(0)  = -, 
G(0)  A2w2 
1 +A2W2 ' A 

@ ( w )  = 

corresponding to a Maxwell model G(s) = (q/A)eLSjA. We define two temperature- 
dependent functions a = a(T),B = B(T) and define G = G ( 0 )  at temperature T and 
Go at temperature T,, with the same convention for A 

G = /3Go, A = aAo. (5.1) 

Solving for a, we get 

Moreover b ( o )  = /3d;(aw). 

If a(T) and P(T) are known, measurements of b(o)  a t  different temperatures could 
be used to get (?i(sZ) at the reference temperature T, and a different frequency 
52 = a w ,  reducing the data to a master curve. One of the problems of the method 
of reduced variables is that (5.1) must also hold for every mode of relaxation, with 
only one pair of functions (a, P), when there are N modes of relaxation, as in equation 
(2.6) of Part 1. 

There appears to be a certain agreement among persons doing high-frequency 
measurements, using the method of reduced variables, that the glassy modulus is 
only a weak function of temperature (see, for example, Harrison 1976). Some authors 
put /3 = 1 as an approximation. Then a is given by a viscosity ratio and a is large 
when T is small. In this case the effective frequency 52 = aw of the storage modulus 



334 L). D .  Joseph, 0. Riccius and M .  Arney 

at the reference temperature is large, and measurements of B ' ( w )  a t  small values of 
w in a cold liquid give q(52) in the liquid at the higher reference temperature T, and 
very high frequencies 52. 

The method of reduced variables is the only way presently known to obtain a 
master curve giving the storage modulus of a liquid a t  one temperature over the 
whole range of frequencies. In  the literature one sees master curves which seem 
convincing; on the other hand, i t  is certainly not possible to say that this method 
works well in every situation (see Ferry 1980, p. 304-312) or completely in any 
situation. The data of BHL represented in figure 20 uses the method of reduced 
variables. 

BHL studied six silicone oils manufactured by Midland Silicones Ltd with nominal 
viscosities ,Z and corresponding number-average molecular weights M N  given by : 

,E(cs) 100 350 1000 12500 30000 100000 

M N x  0.63 1.58 2.1 4 5 6.8 

Our silicone-oil samples were manufactured by Dow Chemicals : 

P (cs) 20 1000 12500 60000 100000 600000 
M N x  0.15 1.65 4.1 6.5 7.5 11.0 

The curves in figure 20 are due to BHL: the solid lines are meant to represent 
expeTimenta1 values, the dotted lines represent an application due to  BHL of the 
principles of the Rouse theory to silicone oils. BHL say that the results show clearly 
the existence of a plateau region in (?' (or o", not shown here). The Rouse theory will 
not predict the existence of a plateau region. The vertical axis on figure 20 gives the 
storage modulus and the horizontal one gives the frequency w in rad/s. 

The horizontal bars in figure 20 represent our data in a manner which requires 
explanation. The horizontal bars are measured values of an effective shear modulus 
G,. We are assuming that G, = G(e), where e is the time of response. We do not know 
the value of e a t  each measurement. I n  $4 we argued that e < 0.002 s. There is no 
precise way to relate our values of G, = G(E)  to the values of @ ( w )  of BHL other than 
to say, following (4.1), that 

If @ ( w )  is a point on the experimental curve of BHL, then G( l/w) lies below it. Since 
@(m)  = G(0) there is another frequency 52 > w such that 

@ ( w ) = G  - =G, ,  (3 
where, of course, c: = 1/52. We cannot find 52 exactly but it lies to  the right of w on 
the horizontal line G(w) = G,. 

To make this comparison clearer we use the relaxation function for figure 18 which 
has a glassy mode, rubbery modes and an effective modulus. This example gives rise 
to a storage modulus which looks vaguely like the one given by BHL. We draw the 
reader's attention to the fact that the effective modulus, which is evident in the plot 
of G ( l / w ) ,  is masked by @ ( w ) .  The reason for this is that @ ( w )  decays only 
algebraically as w is decreased (or t is increased). G(l/52) is already rubbery while 
@(a) is still glassy. 

We located the left-most point of the horizontal lines representing our data a t  the 
point G, = @(o) by using the nominal viscosity as a parameter. We cannot 
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accurately compare our data with the data of BHL for the 20, 60000 and 600000 cs 
silicone oils not studied by them. We have indicated the probable location of our data 
for these oils in figure 20. The WOO0 cs oil is neatly sandwiched between the 30000 
and 100000 cs oils measured by BHL. The storage modulus for the 600000 cs oils 
probably has a more marked plateau than 100000 cs oil measured by BHL. The 
plateau values of the high-molecular-weight poly(dimethylsi1oxane) liquids are 
evidently not sensitive to large viscosity differences (also, what is almost the same 
thing, large temperature differences). This feature is also characteristic of the values 
G, measured in this study. 

BHL attribute the existence of a plateau region to the formation of entanglement 
coupling in the silicone oils of high molecular weight. They find the molecular weights 
at which entanglement becomes important by looking for breaks in the slope of a 
viscosity versus molecular weight graph (their figure 9). The entanglements of long 
chains of macromolecules appears to become important for viscosities greater than 
a critical one in the range between 100 and 1000 cs. 

All of our data points for silicone oils with viscosities larger than 1000 cs may be 
associated with plateau values of the shear relaxation function. This conclusion is 
further supported by data that we took a t  different temperatures. The value of G, 
for the 600000 cs silicone oil does not appear to change strongly with temperature 
(see table 2). This suggests, through timetemperature superposition, that the 
corresponding storage modulus should be only weakly dependent on the frequency. 

The data shown in figure 20 suggest that the wave-speed meter has a response time 
of the order B = l / w ,  where w = @lo4). It may be possible, within the degree of 
rigour allowed by the empirical notion of reduced variables, to use supercooling to 
reduce the response time. To see how this might work we again use a simple Maxwell 

G(s, T) = G(T) e-s/A(T). model 

Then, using (5.1), we get 

G ( s , T )  =/l(T)G(T,)e-8/aA(To) =/lG[f,T,]. 

The reduced time s / a  for supercooled liquids may actually enter into the region of 
small times needed to study the glassy response of liquids of low molecular weight. 

a 

6. Discussion 
First, we gave a brief evaluation of the wave-speed meter. We developed a theory 

and experiment for measuring the speed of shear waves into rest. The speed of shear 
waves is independent of the distance travelled, for small distances. At larger 
distances the waves degenerate into diffusion. A shear modulus may be associated 
with a wave speed. This modulus is a value of the relaxation function a t  an early 
time. 

As far as we know the wave-speed meter is the first rheological instrument based 
on measurements of the speed of shear waves into a fluid at  rest rather than on 
measurements of stresses. The wave-speed meter is a short-time instrument for stress 
relaxation in the same sense that oscillating quartz crystals are high-frequency 
instruments for dynamic measurements which give storage and loss modulus. The 
main defect of the present design of the wave-speed meter is that we cannot measure 
the precise value of the short time B at which the stress wave sensed by the instrument 
is generated. By comparing our experimental results with stress relaxation and the 
storage modulus, it appears that this early time may be of the order of s. 
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We measured wave speeds for different liquids. Most of these, including many that 
might be thought to be Newtonian (lubricating oils, glycerin, olive oil, soybean oil) 
appear to be elastic at  the short timescales of our machine. All of these liquids also 
exhibit elasticity in stress relaxation and have a non-zero storage modulus even at 
relatively low frequencies (500rad/s) or large times (0.02 s) on the standard 
rheometers we used to check for consistency with our wave-speed measurements. 

The wave-speed meter seems to be a more robust instrument than many other 
rheometers in current use. There are no major restrictions on viscosities or liquids 
that can be tested. The heat-control jacket that we use for controlling the temperature 
of our instrument allows us to measure wave speeds at temperatures between 0" to 
70 "C. There seems to be no limitation, even in the present first-generation instrument, 
that would prevent one from measuring wave speeds with one instrument both in 
polymer melts and in supercooled liquids of low molecular weight. 

The rheometrical data given by the wave-speed meter, wave speeds and effective 
rigidities cannot be obtained with other rheometers. 

The second topic of this discussion addresses the scientific issues raised in this 
work. The concept of an effective viscosity and rigidity may be the most important 
one. This concept seems to be required to reconcile the common perception of 
elasticity in experiments on stress relaxation, dynamic measurement and wave 
speeds with the existence of a much faster glassy response. The glassy response is 
associated with enormous rigidities, loQ Pa, equally enormous rates of decay, say 
10-s-lO-10 s, and wave speeds of the order lo5 cm/s. The glassy response cannot be 
detected by any of the usual rheometrical instruments and it could not account for 
our perception of elasticity on the timescales of these instruments. 

Effective rigidities are the rigidities one sees after the glassy modes have decayed. 
On slower, but possibly still enormously fast, timescales, the decayed glassy modes 
appear as an effective viscosity, without further dynamic consequences. 

The notion of an effective rigidity is related to the notion of the spectrum of a 
liquid. A robust, more or less unique effective rigidity might be expected from a 
spectrum centred around two very different relaxation times. Such effective moduli 
have already been identified in pioneering experiments using high-frequency dynamic 
measurements on amorphous polymers. Mason et al. (1949) note that 

Both the torsional crystal and high frequency shear wave techniques applied to 
polyisobutylene and poly-a-methylstyrene liquids, show that there are two main 
relaxation frequencies in these liquids. At frequencies under 100 kc, the shear 
stiffness is in the order of 3 x lo7 dynes/cm2, while in the high megacycle range it 
has increased to 5 x loQ dynes/cm2. The low shear elasticity appears to be associated 
with a composite motion of molecular rotation and translation that allows a 
configurational change to occur from the most probable chain shape. When the 
shear stress is removed, the molecule quickly returns to its most probable shape. 
This results in a low shear stiffness. At high frequencies this motion cannot take 
place, and the shear stiffness is determined by motions within single potential 
wells, and the value approaches that for a crystal. 

We have explored the idea that values of G,, which we measure in polymeric 
solutions of all degrees of dilution and in even in ordinary liquids, like soybean oil, 
are sufficiently robust and reproducible to be described as an effective rigidity. We 
have also showed that these effective rigidities could be masked in the algebraic 
decay of glassy modes on state-of-the-art high-frequency dynamic instruments 
measuring the storage modulus (cf. figure 18). 
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Fluid 

Honey 
AP 30 (1.5%) 
Vistanex 
Polyox (1.7 %) 
Silcone oil (60000 cs) 
CMC (1 %) 
Silcone oil (12500 cs) 
B200 (2 %) 
Glycerin 
Polyox (0.5 yo) 
Olive oil 

193 
160 
139 
58.4 
58 
53.4 
12.2 
9.5 
0.69 
0.1 
0.6 

256 0oO 
172 

2210 
67 

90 700 
305 

34 900 
131 

4 700 

93 
6.9 

7.5 x 10-4 
9.3 x 10-1 
6.3 x 
8.7 x 10-1 

1.8 x 10-l 

7.3 x 10-2 

1.4 x 

6.4 x 10-4 

3.5 x 10-4 

1.5 x 10-4 

6.5 x 10-4 

TABLE 4. Summary of some experimental results (from tables 1 and 2) arranged according to 
decreasing viscosity ,&. The meaaured rigidity is G = Q, and the mean relaxation time is /i/Q. Stress 
relaxation for the first two groups in this table is shown in figures 11-16 

In  reservation, we did not h d  strong support for the idea of a robust effective 
modulus, a value Gp = G(s) ,  relatively insensitive to changes in 8, in the literature 
on dynamic measurements. The idea of a plateau modulus does appear in this 
literature, usually for amorphous polymers with entanglement couplings. We do not 
mean to identify effective moduli, which we have also associated even with not 
particularly dilute polymeric solutions, with plateau moduli. 

It is perhaps desirable to terminate our discussion of effective moduli with some 
remarks about Newtonian liquids. We have argued that the Newtonian viscosity 
could be defined in terms of remnants of modes already relaxed. This view gives a 
certain operational rather than fundamental significance to the Newtonian viscosity. 
In  fact, a unique, effective (Newtonian) viscosity could be expected only in cases 
where the spectrum of the liquid is neatly separated so that fastsand slow modes can 
be identified. The existence of such separated spectra is an open problem in the 
theory of liquids. 

If we admit to fast modes and suppose that they give rise to a relatively small 
viscosity, we may put aside their smoothing effects and think, like Maxwell, about the 
rigidity G, and time of relaxation $/G, of a liquid. Maxwell thought that viscous 
liquids were actually elastic ones with high rigidities and fast times of relaxation. He 
introduced (1873) birefringence to study the elasticity of liquids. He says that 

I have enumerated these instances of the application of polarized light to the study 
of the structure of solid bodies as suggestions with respect to the application of 
the same method to liquids so as to determine whether a given liquid differs from 
a solid in having a very small ‘rigidity ’, but a sensible ‘time of relaxation ’, or in 
both ways. Those which, like Canada balsam, act strongly on polarized light, have 
probably a small ‘rigidity’, but a sensible ‘time of relaxation’. Those which do not 
show this action are probably much more ‘rigid’, and owe their fluidity to the 
smallness of their ‘time of relaxation ’. 

Maxwell’s clear perceptions are marred by the notion of a single time of relaxation. 
This notion does not allow for different relaxation effects in which slow modes with 
small rigidities actually carry the larger viscosity. 

In  table 4 we have summarized some of our experimental results, organizing them 
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in four groups according to  decreasing viscosity ji. The measured rigidity is G = G, 
and the mean relaxation time is PIG.  Of course, if the finite value of G in the table 
is allowed, then none of these liquids can be said to  be Newtonian. We can only say 
that some liquids are more Newtonian than others. Liquids that, like olive oil, have 
a small time of relaxation and also a small viscosity could not exhibit elasticity for 
very long. On the other hand, liquids like honey, or even more, 600000 cs silicone 
oil, that have a small time of relaxation but a large viscosity can have a persistent 
elastic (and even nonlinear) response. The stress in such materials relaxes rapidly but 
much more relaxing is required because the area under the relaxation curve is so large. 
There are probably no Newtonian liquids with large viscosities. 
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